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A b s t r a c t  

It is now almost 200 years since Gauss, a teenager at the 
time, formulated his famous principle of least-squares 
and used it to determine, for the first time, the orbit of 
one of the asteroids, a problem which had defeated 
astronomers for years. When applied to the crystal- 
lographic phase problem, least-squares leads directly to 
the formulation of the minimal principle, which effec- 
tively replaces the phase problem by one of constrained 
global minimization. Shake-and-Bake, the computer 
software package which implements this formulation of 
the phase problem, provides a completely automatic 
solution of this problem. The program has solved ca two 
dozen structures, of which five or six had been 
previously unknown, with no failure. Three of these 
structures - gramicidin A, crambin and rubredoxin - in 
the 300-500 atom range, and six or seven others, in the 
100-200 atom range, were all routinely solved. With this 
background it now appears likely that, provided data to 
atomic resolution is available, structures having as many 
as 1000 atoms or more will prove to be solvable by this 
technique. What if only diffraction data to less than 
atomic resolution is available? Here the crystal ball 
becomes murky and the evidence less than compelling. 
Nevertheless, in view of recent experience, it is again 
conjectured that, building on existing techniques, com- 
plex structures will eventually prove to be routinely 
solvable, even with data to only 1.5 A resolution. 

1. I n t r o d u c t i o n  

1.1. The normalized structure factors E 

In the equal atom case (space group P1) the normal- 
ized structure factors are defined by 

N 
E n = [Eul exp(iqgn) = (1/N 1/2) ~ exp(2zriH.rj), (1) 

j=l 

where H is an arbitrary reciprocal lattice vector, N is the 
number of atoms in the unit cell and rj is the position 
vector of the atom labeled j. The magnitudes IEI are 
directly obtainable from the diffraction intensities, but 
the phases ~0 are lost in the diffraction experiment. 

1.2. The structure invariants 

Although the values of the individual phases are 
known to depend on the structure and the choice of 
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origin, certain linear combinations exist of the phases 
whose values are determined by the structure alone and 
are independent of the choice of origin. These linear 
combinations of the phases are called the structure 
invariants. The most important class of structure 
invariants, and the only one to be considered here, 
consists of the three-phase structure invariants (triplets) 

qgnK = q9 H + q9 K + qg_U_ K. (2) 

1.3. The probabilistic background 

It is assumed that (a) a crystal structure is specified, 
(b) three non-negative numbers R l, R 2 and R 3 are also 
specified and (c) the reciprocal lattice vectors H and K 
are the primitive random variables which are assumed to 
be uniformly and independently distributed in the subset 
of reciprocal space defined by 

IE.I = e l ,  IEKI = R2, IE.+KI = R3 ,  (3) 

where the magnitudes IEI are defined by (1). Then the 
structure invariant qgnK (2), as a function of the primitive 
random variables H and K (1), is itself a random 
variable. 

1.4. The conditional probability distribution of qgnK, 
given IE.I, IEKI and IEu+KI 

Under the three assumptions of §1.3 the conditional 
probability distribution of the triplet qg, K (2), where IEul, 
IEKI and IE.+KI are given by (3), is known to be 

P(cb/R l , R 2, R 3 )  - -  {1/[2zrlo(AuK)]} exp(A.! ¢ cos ~), 

(4) 
where 

AUK = (2/NI/2)RIR2R 3 = (2/NI/Z)IEHEKEn+KI (5) 

and I 0 is the modified Bessel function. Equation (4) 
implies that the mode of qg.K is zero, and the conditional 
expectation value (or average) of cos qgnK, given AuK, is 

E(cos~ouK/AuK ) = [II(AuK)]/[Io(AnK)] > 0. (6) 

It is also readily confirmed that the larger the value of 
AuK, the smaller is the conditional variance of cos 99nK, 
given AuK. It is to be stressed that the conditional 
expected value of the cosine (6) is always positive since 
AUK > 0. 
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2. The minimal principle 

2.1. The heuristic background 

It is assumed that a crystal structure consisting of N 
identical atoms in the unit cell is fixed, but unknown, that 
the magnitudes IEI of the normalized structure factors E 
are known, and that a sufficiently large base of phases, 
corresponding to the largest magnitudes IEI, is specified. 

The mode of the triplet distribution (4) is zero and the 
variance of the cosine is small if AUK (5) is large. In this 
way one obtains the estimate for the triplet 99nK (2) 

99HK : 99H + 99K -']- 99-H-K ~ 0, (7) 

which is particularly good in the favorable case when 
AHK (5) is large, i.e. when IE HI, IEKI and IEH+KI are all 
large. The estimate given by (7) is one of the corner 
stones of the traditional techniques of direct methods. It 
is surprising how useful (7) has proven to be in the 
applications, especially since it yields only the zero 
estimate of the triplet and only those estimates are 
reliable for which IEHI, IEKI and IEH+KI are all large. 
Clearly the coefficient 2 I N  ~/2 in (5), and therefore also 
AHK, both decrease with increasing N, i.e. with increasing 
structural complexity. Hence, the relationship (7) 
becomes increasingly unreliable for larger structures, and 
the traditional step-by-step sequential direct methods 
procedures based on (7) eventually fail. However, the 
phase-annealing approach of Sheldrick (1990) and the 
program SAYTAN, devised by Woolfson & Yao (1990), 
have to some extent overcome this limitation. Here a 
different approach is described. 

In view of (6) and the previous discussion, one now 
replaces the zero estimate (7) of the triplet 99HK by the 
estimate 

cos 99HK ~ [II (AHK)]/[Io(AHK)] (8) 

and expects that the smaller the variance, that is the larger 
the AnK, the more reliable this estimate will be. Hence, 
one is led to construct the function, determined by the 
known magnitudes IE[ 

= ( 1 / Z  AHK~ E AuK R R(99) 
\ H,K ,/H,K 

× {cos 99nK - [ll (AHK)]/[Io(AnK)]} 2, (9) 

which is seen to be a function of all those triplets 99nK 
which are generated by a prescribed set of phases {99}. 
Recall that if the basis set of {99} is sufficiently large then 
there are many more structure invariants 99nK than 
individual phases qg, and a myriad of identities among 
these structure invariants must, of necessity, then be 
satisfied. In accordance with the principle of least- 
squares, it is natural to suppose that the set of values for 
the structure invariants 99nK is best which minimizes the 
weighted sum of squares of residuals R (9), subject to the 
constraint that all identities among the structure invar- 
iants are in fact satisfied. 

Since the triplets 99HK are defined by (2) as functions of 
the individual phases 99 (9) defines R implicitly as a 
function of the individual phases. One therefore naturally 
anticipates that the set of values for the individual phases 
is best which minimizes the residual R (9), now regarded 
as a function of the individual phases 99. The advantage 
of this formulation is that all identities among the 
structure invariants will then automatically be satisfied, 
and it is unnecessary to define in further detail what the 
nature of these identities must be. 

2.2. The minimal principle 

In order to derive the conditions under which the 
formulation of the minimal principle given in the 
previous paragraph is valid, one first defines R r as the 
value of R (9) obtained when the phases are equal to their 
true values for some choice of origin and enantiomorph. 
One then defines R R as the value of R when the phases 
are assigned values at random so that in this case 

(COS (PHK)H,K = (COS 2¢PHK)H, K : 0. (10) 

With these definitions for R r and R R it may then be 
shown that (De Titta, Weeks, Thuman, Miller & 
Hauptman, 1994) 

R r < ½ < R R. (11) 

While the inequalities (1 1 ) tend to confirm the conjecture 
that the true values of the phases minimize R, the 
conjecture itself is in fact not true. As it turns out, special 
values exist for the phases which yield values for R even 
less than R r, so that R r is not the global minimum of R. It 
is for this reason that one must further constrain the 
phases to satisfy certain identities among them which are 
known to exist because their number generally exceeds 
by far the number of unknown parameters needed to 
specify the crystal structure. In short, it is the constrained 
global minimum of R which yields the desired phases 
(the minimal principle). The next section describes how 
this minimum is reached in practice. 

3. The computer program shake-and-bake 

The six-part shake-and-bake (Weeks, DeTitta, Haupt- 
man, Thuman & Miller, 1994) phase-determination 
procedure, shown by the flow diagram in Fig. 1, 
combines minimal-function phase refinement and real- 
space filtering. It is an iterative process that is repeated 
until a solution is achieved or a designated number of 
cycles have been performed. With reference to Fig. 1, the 
major steps of the algorithm are described next and 
typical values of the various parameters used in this 
procedure are given and summarized in Table 1, in which 
N' denotes the number of non-H atoms, assumed 
identical, in the asymmetric unit. 
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3.1. Generate invariants 

Normalized structure-factor magnitudes (IEl's) are 
generated by standard scaling methods such as a Wilson 
plot, and the triplet invariants that involve the largest 
corresponding IEI's are generated. Parameter choices that 
must be made at this stage include the number of phases 
and triplets to be used. The total number of invariants is 
ordinarily chosen to be at least 100 times the number of 
atoms. 

3.2. Generate trial structure 

A trial structure or model is generated that is 
comprised of a number of randomly positioned atoms 
and their symmetry-related mates sufficient to specify the 
origin and enantiomorph for the space group in question. 
The starting coordinate sets are subject to the restrictions 
that no two atoms are closer than a specified distance 
(normally 1.2,~,) and that no atom is within bonding 
distance of more than four other atoms. 

3.3. Structure-factor calculation 

A normalized structure-factor calculation based on the 
trial coordinates is used to compute initial values for all 

Start ) 

Generate invariants ] 

I Generate trial 
structure 

Structure-factor 
calculation or i 
inverse Fourier 

summation i 

i Phase refinement 
(R(~0) reduced) 

I Fourier 
summation 

]_.,~ 'Yes No 

r" 

I..~ Yes 

r 

No 

Real space ] ..~ 
filtering I 

. - -~ Stop 

Yes 

Fig. 1. Flow chart for shake-and-bake, the minimal-function phase 
refinement and real-space filtering procedure. 

Table 1. Shake-and-bake variables with typical values 

Independent non-H atoms N'  
Invariant generation: 

Phases per atom 10 
Triplets per atom 100 

Initial phasing model 1, 2 or 4 atoms 
Parameter shift 

Step size 16 
Number of steps 4-5 

Real space: 
Grid size (~,) 0.33 
Peaks selected ~ N' 

Number of cycles "~ N' 

the desired phases simultaneously. In subsequent cycles, 
peaks selected from the most recent Fourier series are 
used as atoms to generate new phase values. In the 
applications reported here, all non-H atoms were 
considered to be equal unless stated otherwise. 

3.4. Phase refinement 

The values of the phases are perturbed by a parameter- 
shift method in which R(tp), which measures the mean- 
square difference between estimated and calculated 
structure invariants, is reduced in value. R(~o) is initially 
computed on the basis of the set of phase values obtained 
from the structure-factor calculation in §3.3. The phase 
set is ordered in decreasing magnitude of the associated 
IEl's. The value of the first phase is incremented by a 
preset amount and R(~0) is recalculated. If the new 
calculated value of R(~o) is lower than the previous one, 
the value of the first phase is incremented again by the 
preset amount. This is continued until R(~0) no longer 
decreases or until a predetermined number of increments 
has been applied to the first phase. A completely 
analogous course is taken if, on the initial incrementa- 
tion, R(~0) increases, except that the value of the first 
phase is decremented until R(tp) no longer decreases or 
until the predetermined number of decrements has been 
applied. The remaining phase values are varied in 
sequence as just described. Note that when the ith phase 
value is varied, the new values determined for the 
previous i -  1 phases are used immediately in the 
calculation of R(~o). This process, when convergent, 
yields the constrained global minimum of R(~0). The step 
size and number of steps are variables whose values must 
be chosen. In centrosymmetric space groups, each phase 
takes on the values 0 and 180 °, and the value yielding the 
smaller R(~o) is chosen. 

3.5. Fourier summation 

Fourier summation is used to transform phase 
information into an electron-density map. Normalized 
structure-factor amplitudes ]El's have been used at this 
stage (rather than F's)  because phases are available for 
the largest E's but not for all the largest F's.  The grid size 
must be specified. 
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Table 2. Test data sets re-solved using the minimal function 

Structure Atoms Formula Space group 
Prostaglandin E 2 25 C~oH3205 PI 
Prostaglandin Ftfl 25 C2oH350 5 C2 
Aidosterone 27 C21H2805H20 P2 
9a-Methoxycortisol 28 C22 H32 06 P2121 ~ 
AZET 48 (C21HIrCINO)2 Pca21 
Tetrahymanol 63 (C30H520)2.H20 P21 
APAPA 69 C30H37 NIsOIrP2.6H20 P41212 
Antibiotic A204A 71 C4~H84OI7 H20.C 3 H60 C2 
lsoleucinomycin 84 Ce~)Ht02N6Oi8 P2~ 2~,',~ 
meso-Valinomycin 84 C¢,oHI{~N6018 PI 
Nonpeptidic enkephalin analog 96 (C24Hy0N2Or)3 PI 
Hexaisoleucinomycin 127 C8~ H It0N8024.14H20 P212121 
Gramicidin A 317 (CgqHI~)N20OI7)2.15C2HsOH P2j212t 

Reference 
Edmonds & Duax (1974) 
G. T. DeTitta (unpublished) 
Duax & Hauptman (1972) 
Weeks, Duax & Wolff (1976) 
Colens, Declercq, Germain, Putzeys & Van Meersche (1974) 
Langs, Duax, Carrell, Berman & Caspi (1977) 
Suck, Manor & Saenger (1976) 
Smith, Strong & Duax (1978) 
Pletnev, Galitskii, Smith, Weeks & Duax (1980) 
D. A. Langs (unpublished) 
D. A. Langs (unpublished) 
Pletnev, Ivanov, Langs, Strong & Duax (1992) 
Langs (1988) 

3.6. Real-space filtering (identities among phases im- 
posed) 

Image enhancement has been accomplished by a 
discrete electron-density modification consisting of the 
selection of a specified number of the largest peaks on 
the Fourier map for use in the next structure-factor 
calculation. The simple choice, in each cycle, of a 
number of the largest peaks corresponding to the number 
of expected atoms has given satisfactory results. No 
minimum interpeak-distance criterion is applied at this 
stage. 

The shake-and-bake procedure has been tested 
successfully using the experimentally measured atomic 
resolution intensities for the known structures (among 
others) listed in Table 2. These structures range in size 
from 25 to 317 independent non-H atoms in the 
asymmetric unit and crystallize in seven different space 
groups. Two structures contain moderately heavy P or C1 
atoms. Some of these structures (e.g. %t-methoxycorti- 
sol) were easily solved by conventional direct methods, 
while at least one (gramicidin A) required years of 
painstaking nonroutine effort. Several presented some 
challenge and three (prostaglandin E 2, AZET and 
APAPA) were included in a suite of difficult structures 
supplied by the crystallographic group at the University 
of York, England. In all cases those trials which led to 
solutions were readily identified by the behavior of the 
minimal function R(~0) (9) during successive cycles 
(Weeks et al., 1994). Thus, the fact that these structures 
had been known was not used in these applications. 

4. Three notable applications 

4.1. Gramicidin A 

After years of back-breaking work, this 317 atom 
structure (cited in Table 2) was finally solved by Langs 
(1988), who used the full power of direct methods then 
available in combination with molecular replacement. In 
sharp contrast, shake-and-bake solved this structure 
automatically with a success rate of 0.3%. More 
precisely, 14 solutions were obtained in 4728 trials. 
The initial models consisted of 300 randomly positioned 

atoms per asymmetric unit, and in each of the prescribed 
160 cycles of shake-and-bake the strongest 250 peaks in 
the Fourier were chosen. The basis set consisted of 2500 
phases with the largest ]El values, and the 25 000 triplets 
having the largest A values were used in defining R (9). 

4.2. Crambin 

The crystal structure of crambin (space group P2~), a 
46-residue protein consisting of approximately 400 non- 
H atoms, was first solved at 1.5 A by exploiting the 
anomalous scattering of its six S atoms at a single 
wavelength far removed from the absorption edge of 
sulfur (Hendrickson & Teeter, 1981). All previous 
attempts to solve crambin ab initio by conventional 
direct methods have been unsuccessful (Sheldrick, 
Dauter, Wilson, Hope & Siekes, 1993). In this applica- 
tion, data were collected to a resolution of 0.83A, 
equivalent reflections were averaged, and differences due 
to the anomalous dispersion of the S atoms were ignored. 
The 4000 reflections with the largest IE[ values were 
used to generate the 40000 triplets having the largest 
AHK values in order to define the minimal function R(~0) 
(9). One thousand trial structures, each consisting of two 
randomly positioned atoms per asymmetric unit, were 
subjected to 200 cycles of the shake-and-bake procedure. 
In the first cycle the structure-factor calculations were 
based on these random two-atom structures. Since a total 
of approximately 400 atoms was expected, the 400 
largest peaks in each Fourier map were used in 
subsequent structure-factor calculations with the six 
largest peaks being treated as S atoms and the remainder 
as C atoms. After 200 or fewer shake-and-bake cycles, 
36 of the 1000 trial structures yielded solutions, for a 
success rate of 3.6%. Final values for the minimal 
function R(qg) were in the range 0.412-0.423 for the 36 
solutions, but were in the range 0.450-0.499 for the 964 
nonsolutions. Thus, the minimal function served to 
separate the solutions from the nonsolutions and to 
identify the solutions unambiguously. It is of some 
interest to observe that R T, the value of the constrained 
global minimum of R(~0) when all phases are equal to 
their true values for any choice of origin and enantio- 
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morphs, is predicted on theoretical grounds to be 0.422, 
well within the range (0.412-0.423) actually reached by 
shake-and-bake. It is of even greater interest to observe 
that even if the six S atoms are replaced by C atoms and 
diffraction intensities modified so as to simulate real data 
for this fictional all light-atom structure, shake-and-bake 
still works in eight out of 1000 trials or at the reduced 
success rate of 0.8%. 

4.3. Rubredoxin (space group P2 z) 

This 494-atom s t r u c t u r e  (C243Hs04N57OI8756Fel) was 
readily solved by shake-and-bake with a success rate of 
2.7% (25 solutions in 918 trials) using data to 0.92,~, 
resolution. The initial trial structures consisted of two 
randomly positioned atoms; the 45000 triplets with 
largest AnK values generated by the 5000 phases having 
largest IEI values were used in the definition of the 
minimal function R(tp). 250 cycles per trial were run and 
the 494 largest peaks were selected in successive Fourier 
maps as successive approximations to the true structure 
in those cases when the process converged to solutions. It 
should be noted that this structure had been previously 
solved by conventional direct methods (Sheldrick et al., 
1993). 

5. The second minimal principle 

The probabilistic background on which the (first) 
minimal principle is based has been described in §1.3. 
With a different probabilistic background one arrives at a 
different minimal principle. 

5.1. The probabilistic background 

It is assumed that (a) a crystal structure (consisting of 
N identical atoms per unit cell in P1) is specified, (b) the 
reciprocal lattice vector h is also specified, (c) two non- 
negative numbers R 2 and R 3 a r e  also specified, and 
(d) the reciprocal lattice vector K is the primitive random 
variable which is assumed to be uniformly distributed in 
the subset of reciprocal space defined by 

IEKI = R2,  IEh+KI - R3,  ( 1 2 )  

where the magnitudes IEI are defined by (1). Then, the 
structure invariant 

¢PhK --- qgh -31- qglK "3!- qg -h -K ,  (13) 

as a function of the primitive random variable K (1), is 
itself a random variable. 

5.2. The conditional probability distribution of tPha, 
given h, IEKI and IEh+al 

Under the four assumptions of §5.1, the conditional 
probability distribution of the triplet tph K (13), given h, 
IEKI, IEh+KI, is known to be 

eh(~/h,  R2, R3) = [1/2rrlo(AhK)]exp(Aha COS ~),  (14) 

where 

Ahk = (2/N 1/2)IE h IR2R3, (15) 

which should be compared with (4) and (5). The 
distribution (14) leads directly to the following relation- 
ship among the (complex) normalized structure factors E 

( {[II (AhK)]/[Io(AhK)]} IEK Eh_K I )K Eh = IEh I (EK Eh-K )K, 
(16) 

where h is fixed, AhK is defined by (15) and the averages 
are taken over the same arbitrary set of reciprocal lattice 
vectors K, for example, those for which IEKI and IEh_KI 
are both large. 

5.3. The second-minimal principle 

Referring once again to the principle of least-squares, 
(16) leads directly to the second-minimal function, a 
function of the phases dependent on presumed known 
magnitudes IEI 

x ~ IEKE,+KI(cos~0hK -- [I~(AhK)I/[Io(AhK)I) 
K 

+ IEKEh+K I sin ~ K  , (17) 

in which the sums are taken over arbitrary sets of 
reciprocal lattice vectors h and K. Equation (17) should 
be compared with (9), the first-minimal function. 
Denoting by R} the value of R'(~o) when the phases are 
equal to their true values, no matter what the choice of 
origin and enantiomorph, and by R~ the value of R'(~o) 
when the phases are chosen at random, it is readily 
verified that 

/ 

RT < R~, (18) 

in analogy with the inequalities (l l). Hence, one 
anticipates, as before, that the constrained global 
minimum of R'(~p) yields the true values of the phases 
for some choice of origin and enantiomorph (the second- 
minimal principle). 

A computer program analogous to shake-and-bake, 
which would implement the second-minimal principle 
has not yet been written. Once this is complete and the 
program tested extensively, it will be possible to compare 
these two related, but different, approaches to the phase 
problem. 

6. A fundamental minimal principle (looking ahead) 

Since (16) is a relationship among the complex normal- 
ized structure factors E, it leads, again via least-squares, 
not only to (17), a function of phases only in which the 
magnitudes JEI appear as parameters, but also to the 
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function R(cp, IEI) of phases ~o and magnitudes IEI 
defined by 

2 

- [1, (A.K)I/[Io(A.K)I)] 

+ [ ~ IEKEH+KI sin ~0HK] 2 }, (19) 

where g~K and AHK are defined by (2) and (5). R(~o, IEI) 
is expected to be minimal, in some sense, when the 
phases ~o and magnitudes IEI correspond to one and the 
same crystal structure. R(~0, IEI) will be named the 
minimal function. The sense in which R(~o, IEI) is 
minimal is made precise by the following. 

6.1. Fundamental minimal principle 

A crystal structure is presumed to be given. R(~o, IEI) is 
a function of phases 99 and magnitudes IEI. If some 
(possibly no) phases opt are presumed to be known and/or 
some (possibly no) magnitudes IELI are presumed to be 
known, then R(~0, IEI) becomes a function of the 
remaining phases q~ and the remaining magnitudes 
IEHI in which the known phases and/or magnitudes 
appear as parameters 

e(cp, IE[) ---> e(~0h, IEHI/~0z, IELI). (20) 

If the known ¢pt's and/or the known IELI'S are sufficient 
to determine the crystal structure, then the ¢Ph'S and the 
IEHI'S are also determined and their values minimize the 
function 

e(~0h, IEnl/cPt, IELI). (21) 

Corollary 1. Magnitudes IEI determine phases ¢p. If a 
set of magnitudes {IEI} (sufficient to determine a crystal 
structure) is presumed to be known, the minimal function 
R(qg, IEI) becomes a function of phases only 

e(cp, IEI) ~ R(cp/IEI), (22) 

with the property that the true values of the phases 
minimize. 

e(~o/IEI). (23) 

Thus, magnitudes IEI determine phases qg. 
Corollary 2. Phases ¢p determine magnitudes IEI. If a 

set of phases {~p} (sufficient to determine a crystal 
structure) is presumed to be known, the minimal function 
e(cp, IEI) becomes a function of magnitudes IEI only 

e(~0, IEI) ~ R(IEI/cp), (24) 

with the property that the true values of the magnitudes 
minimize 

R(IEI/cp). (25) 

Thus, phases ~0 determine magnitudes IEI. 
Corollary 3. Magnitudes IEI and low-resolution 

phases ~o t determine high-resolution phases ¢Ph. If a set of 
magnitudes {IEI} and a set of low-resolution phases {¢Pl} 
(sufficient to determine a crystal structure) are presumed 
to be known, the minimal function R(cp, IEI) becomes a 
function of high-resolution phases ¢Ph alone 

g(qg, IEI) --+ e(cPh/~ot, IEI), (26) 

with the property that the true values of the high 
resolution phases ~ minimize 

e(99h/qgt, IEI). (27) 

Thus, magnitudes IEI and low-resolution phases opt 
determine high-resolution phases ¢Pn. 

Corollary 4. Low-resolution magnitudes IELI deter- 
mine high-resolution magnitudes IEHI and phases 99. If a 
set of low-resolution magnitudes {IELI} (sufficient to 
determine a crystal structure) is presumed to be known, 
the minimal function R(cp, IEI) becomes a function of 
phases ¢p and high-resolution magnitudes IEHI 

e(cp, Ifl) ~ e(cp, IEnl/IE~.I), (28) 

with the property that the true values of the phases ¢p and 
the true values of the high-resolution magnitudes IEHI 
minimize 

e(cp, IEHI/IELI). 

Thus, low-resolution magnitudes IELI determine high- 
resolution magnitudes IEHI and phases ¢p. Preliminary 
calculations using known structures have conf'trmed the 
validity of Corollaries 1-4. 

The fundamental minimal principle and its corollaries, 
in particular Corollary 4, must not be construed to imply 
that a resolution higher than inheres in the known (or 
observable) data is attainable, only that the higher 
resolution information is determined with an uncertainty 
commensurate with the resolution of the given data. Of 
course, there still remains the problem, at present not 
resolved, of finding the required minima in the several 
cases. Since shake-and-bake has solved this problem in 
the special case that magnitudes IEI alone are known to 
atomic resolution, one may perhaps be forgiven for 
looking ahead to the day when the problems formulated 
here, and known to have solutions in principle, are finally 
resolved. 

Due acknowledgement is made to Drs George DeTitta, 
Russ Miller and Charles Weeks whose contribution made 
it possible to 'look ahead'. Research supported by 
National Institute of General Medical Sciences Grant 
No. 1PO1GM46733. 
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